Towards Improved Observation Models for Visual Tracking: Selective Adaptation
نویسندگان
چکیده
An important issue in tracking is how to incorporate an appropriate degree of adaptivity into the observation model. Without any adaptivity, tracking fails when object properties change, for example when illumination changes affect surface colour. Conversely, if an observation model adapts too readily then, during some transient failure of tracking, it is liable to adapt erroneously to some part of the background. The approach proposed here is to adapt selectively, allowing adaptation only during periods when two particular conditions are met: that the object should be both present and in motion. The proposed mechanism for adaptivity is tested here with a foreground colour and motion model. The experimental setting itself is novel in that it uses combined colour and motion observations from a fixed filter bank, with motion used also for initialisation via a Monte Carlo proposal distribution. Adaptation is performed using a stochastic EM algorithm, during periods that meet the conditions above. Tests verify the value of such adaptivity, in that immunity to distraction from clutter of similar colour to the object is considerably enhanced.
منابع مشابه
Tracking Interval for Type II Hybrid Censoring Scheme
The purpose of this paper is to obtain the tracking interval for difference of expected Kullback-Leibler risks of two models under Type II hybrid censoring scheme. This interval helps us to evaluate proposed models in comparison with each other. We drive a statistic which tracks the difference of expected Kullback–Leibler risks between maximum likelihood estimators of the distribution in two diff...
متن کاملMultiple-Cue-Based Visual Object Contour Tracking with Incremental Learning
This paper proposes a visual object contour tracking algorithm using a multi-cue fusion particle filter. A novel contour evolution energy is proposed which integrates an incrementally learnt model of object appearance with a parametric snake model. This energy function is combined with a mixed cascade particle filter tracking algorithm which fuses multiple observation models for object contour ...
متن کاملRobust Fusion of Colour Appearance Models for Object Tracking
This paper reports on work which fuses three different appearance models to enable robust tracking of multiple objects on the basis of colour. Short-term variation in object colour is modelled non-parametrically using adaptive binning histograms. Appearance changes at intermediate time scales are represented by semi-parametric (Gaussian mixture) models while a parametric subspace method (Robust...
متن کاملDendritic calcium accumulation associated with direction-selective adaptation in visual motion-sensitive neurons in vivo.
Motion adaptation in directionally selective tangential cells (TC) of the fly visual system has previously been explained as a presynaptic mechanism. Based on the observation that adaptation is in part direction selective, which is not accounted for by the former models of motion adaptation, we investigated whether physiological changes located in the TC dendrite can contribute to motion adapta...
متن کاملIncremental pairwise discriminant analysis based visual tracking
The distinguishment between the object appearance and the background is the useful cues available for visual tracking, in which the discriminant analysis is widely applied. However, due to the diversity of the background observation, there are not adequate negative samples from the background, which usually lead the discriminant method to tracking failure. Thus, a natural solution is to constru...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002